Abstract

Evanescent and tightly confined propagating waves exhibit a remarkable transverse spin density since the longitudinal component of the electric field is not negligible. In this work, we obtain via numerical simulations the electric field components of the fundamental guided modes of two waveguides typically used in silicon photonics: the strip and the slot waveguide. We obtain the relation between transverse and longitudinal field components, the transverse spin densities and other important parameters, such as the longitudinal component of the so-called Belinfante spin momentum density. By asymmetrically placing a circularly-polarized point-like dipole source in regions showing local circular polarization, the guided mode is excited unidirectionally via spin-orbit coupling. In contrast to metal plates supporting surface plasmons, the multimode behavior of silicon waveguides results in different spin-orbit coupling properties for each guided mode. Our results may find application in silicon photonic devices, integrated quantum optics and polarization manipulation at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call