Abstract
The ability to improve the limited resolving power of optical imaging systems while approaching the theoretical diffraction limit has been an attractive discipline with growing interest over the last years due to its benefits in many applied optics systems. This paper presents a new approach to achieve transverse superresolution in far-field imaging systems, with direct application in both digital microscopy and digital holographic microscopy. Theoretical analysis and computer simulations show the validity of the presented approach.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.