Abstract

In the Stern–Gerlach experiment, silver atoms were separated according to their spin state (Gerlach and Stern 1922 Z. Phys.9 353–355). This experiment demonstrates the quantization of spin and relies on the classical description of motion. However, so far, no design has led to a functional Stern–Gerlach magnet for free electrons. Bohr and Pauli showed in the 1930 Solvay conference that Stern–Gerlach magnets for electrons cannot work, at least if the design is based on classical trajectories (Pauli W 1932 Proc. of the 6th Solvay Conf. 2 (1930) (Brussels: Gauthier-Villars) pp 183–86, 217–20, 275–80; Pauli W 1964 Collected Scientific Papers ed R Kronig and V F Weiskopf, vol 2 (New York: Wiley)). Here, we present ideas for the realization of a Stern–Gerlach magnet for electrons in which spin and motion are treated fully quantum mechanically. We show that a magnetic phase grating composed of a regular array of microscopic current loops can separate electron diffraction peaks according to their spin states. The experimental feasibility of a diffractive approach is compared to that of an interferometric approach. We show that an interferometric arrangement with magnetic phase control is the functional equivalent of an electron Stern–Gerlach magnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.