Abstract

We describe a novel technique, based on image compression and machine learning, for transverse phase space tomography in two degrees of freedom in an accelerator beamline. The technique has been used in the CLARA accelerator test facility at Daresbury Laboratory: results from the machine learning method are compared with those from a conventional tomography algorithm (algebraic reconstruction) and applied to the same data. The use of machine learning allows reconstruction of the 4D phase space distribution of the beam to be carried out much more rapidly than using conventional tomography algorithms and also enables the use of image compression to reduce significantly the size of the data sets involved in the analysis. Results from the machine learning technique are at least as good as those from the algebraic reconstruction tomography in characterizing the beam behavior, in terms of the variation of the beam size in response to variation of the quadrupole strengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.