Abstract

The study of transverse optical pattern formation has been studied extensively in nonlinear optics, with a recent experimental interest in studying the phenomenon using cold atoms, which can undergo real-space self-organization. Here, we describe our experimental observation of pattern formation in cold atoms, which occurs using less than 1 microWatt of applied power. We show that the optical patterns and the self-organized atomic structures undergo continuous symmetry-breaking, which is characteristic of non-equilibrium phenomena in a multimode system. To theoretically describe pattern formation in cold atoms, we present a self-consistent model that allows for tight atomic bunching in the applied optical lattice. We derive the nonlinear refractive index of a gas of multi-level atoms in an optical lattice, and we derive the threshold conditions under which pattern formation occurs. We show that, by using small detunings and sub-Doppler temperatures, one achieves two orders of magnitude reduced intensity thresholds for pattern formation compared to warm atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call