Abstract
The transverse momentum spectra of several types of hadrons,p,p̅,K+,K-,Ks0,Λ,Ω,Ω̅,Ξ-, andΞ̅produced in most central Pb-Pb collisions at LHC energysNN=2.76 TeV have been studied at midrapidity (|y|<0.5) using an earlier proposed unified statistical thermal freeze-out model. The calculated results are found to be in good agreement with the experimental data measured by the ALICE experiment at LHC. The model calculation fits provide the thermal freeze-out conditions in terms of the temperature and collective flow effect parameters for different particle species. Interestingly the model parameter fits to the experimental data reveal stronger collective flow in the system and lesser freeze-out temperatures of the different particle species as compared to Au-Au collisions at RHIC. The strong increase of the collective flow appears to be a consequence of the increasing particle density at LHC. The model used incorporates a longitudinal as well as transverse hydrodynamic flow. The chemical potential has been assumed to be nearly equal to zero for the bulk of the matter owing to high degree of nuclear transparency effect at such collision energies. The contributions from heavier decay resonances are also taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.