Abstract
We experimentally analyze the average-power-scaling capabilities of ultrafast, thulium-doped fiber amplifiers. It has been theoretically predicted that thulium-doped fiber laser systems, with an emission wavelength around 2 µm, should be able to withstand much higher heat-loads than their Yb-doped counterparts before the onset of transverse mode instability (TMI) is observed. In this work we experimentally verify this theoretical prediction by operating thulium doped fibers at very high heat-load. In separate experiments we analyze the performance of two different large-core, thulium-doped fiber amplifiers. The first experiment aims at operating a short, very-large core, thulium-doped fiber amplifier at extreme heat-load levels of more than 300 W/m. Even at this extreme heat-load level, the onset of TMI is not observed. The second experiment maximizes the extractable average-output power from a large-core, thulium-doped, fiber amplifier. We have achieved a pump-limited average output power of 1.15 kW without the onset of TMI. However, during a longer period of operation at this power level the amplifier performance steadily degraded and TMI could be observed for average powers in excess of 847W thereafter. This is the first time, to the best of our knowledge, that TMI has been reported in a thulium-doped fiber amplifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.