Abstract

We present a numerical study of the localized transverse magnetic (TM) defect modes in a two-dimensional, triangular-lattice photonic crystal. The sample consists of an array of circular, air cylinders in a dielectric medium (GaAs). The defect modes were calculated by using a parallel version of the finite-difference time-domain method on the Yee mesh. To validate our computations the results for the transverse electric case were checked against experimental results and the numerical results using a different method. We study the spatial symmetry for TM modes, obtained by changing the dipole excitation frequency. Also, we vary the defect-cylinder radius to tune the resonant frequency across the band gap. The TM mode is found to be highly localized at the defect in the photonic lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.