Abstract

Pearson and Bellissard recently built a spectral triple - the data of Riemanian noncommutative geometry - for ultrametric Cantor sets. They derived a family of Laplace-Beltrami like operators on those sets. Motivated by the applications to specific examples, we revisit their work for the transversals of tiling spaces, which are particular self-similar Cantor sets. We use Bratteli diagrams to encode the self-similarity, and Cuntz-Krieger algebras to implement it. We show that the abscissa of convergence of the zeta-function of the spectral triple gives indications on the exponent of complexity of the tiling. We determine completely the spectrum of the Laplace-Beltrami operators, give an explicit method of calculation for their eigenvalues, compute their Weyl asymptotics, and a Seeley equivalent for their heat kernels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.