Abstract

We study the real-time dynamics of a quantum Ising chain driven periodically by instantaneous quenches of the transverse field (the transverse field varying as rectangular wave symmetric about zero). Two interesting phenomena are reported and analyzed: (1) We observe dynamical many-body freezing or DMF (Phys. Rev. B, vol. 82, 172402, 2010), i.e. strongly non-monotonic freezing of the response (transverse magnetization) with respect to the driving parameters (pulse width and height) resulting from equivocal freezing behavior of all the many-body modes. The freezing occurs due to coherent suppression of dynamics of the many-body modes. For certain combination of the pulse height and period, maximal freezing (freezing peaks) are observed. For those parameter values, a massive collapse of the entire Floquet spectrum occurs. (2) Secondly, we observe emergence of a distinct solitary oscillation with a single frequency, which can be much lower than the driving frequency. This slow oscillation, involving many high-energy modes, dominates the response remarkably in the limit of long observation time. We identify this slow oscillation as the unique survivor of destructive quantum interference between the many-body modes. The oscillation is found to decay algebraically with time to a constant value. All the key features are demonstrated analytically with numerical evaluations for specific results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call