Abstract

In this paper, we investigate the spectral instability of periodic traveling wave solu- tions of the generalized Korteweg-de Vries equation to long wavelength transverse perturbations in the generalized Kadomtsev-Petviashvili equation. By analyzing high and low frequency limits of the appropriate periodic Evans function, we derive an orientation index which yields sufficient conditions for such an instability to occur. This index is geometric in nature and applies to arbitrary periodic traveling waves with minor smoothness and convexity assumptions on the nonlinearity. Using the integrable structure of the ordinary differential equation governing the traveling wave profiles, we are then able to calculate the resulting orientation index for the elliptic function solutions of the Korteweg-de Vries and modified Korteweg-de Vries equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.