Abstract

In this paper, we aim to estimate the vertical gradients in the rotational velocity of the Galaxy. This is carried out in the framework of a global thin disc model approximation. The predicted gradient values coincide with the observed vertical fall-off in the rotation curve of the Galaxy. The gradient is estimated based on a statistical analysis of trajectories of test bodies in the gravitational field of the disc and in an analytical way using a quasi-circular orbit approximation. The agreement of the results with the gradient measurements is remarkable in view of other more complicated, non-gravitational mechanisms used for explaining the observed gradient values. Finally, we find that models with a significant spheroidal component give worse vertical gradient estimates than the simple disc model. In view of these results, we can surmise that, apart from the central spherical bulge and Galactic halo, the gross mass distribution in the Galaxy forms a flattened rather than spheroidal figure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call