Abstract
The transverse failure response of unidirectional fiber-epoxy systems is studied by means of finite element simulations. An interface damage model is used for modeling fiber debonding and epoxy cracking. The convergence of the numerical results upon mesh refinement is analyzed. It is found that the failure response depends on the relative strength and relative toughness of the fiber-epoxy interface and the epoxy matrix. The tensile failure response of epoxy systems containing multiple fibers is also analyzed. In addition, the simulations demonstrate the influence on the failure response by the relative strength of the fiber-epoxy interface and the epoxy matrix, and by the fiber volume fraction and fiber distribution. The simulated fracture patterns are shown to be in good agreement with experimental observations reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.