Abstract
Transverse-electric (TE) surface plasmon polaritons are unique eigenmodes of a homogeneous graphene layer that are tunable with the chemical potential and temperature. However, as their dispersion curve spectrally lies below the light line, they cannot be resonantly excited by an externally incident wave. Here, we propose a way of exciting the TE modes and tuning their peaks in the transmission by introducing a one-dimensional graphene grating. Using the scattering-matrix formalism, we show that periodic modulation of graphene makes transmission more pronounced, potentially allowing for experimental observation of the TE modes. Furthermore, we propose the use of turbostratic graphene to enhance the role of the surface plasmon polaritons in optical spectra. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.