Abstract

Formation of complicated emission patterns consisting of many transverse modes and associated intensity pulsations at beat frequencies between some pairs of transverse eigenmodes in microchip solid-state lasers with laser-diode asymmetric end-pumping are reviewed. The dependence of billiard-like transverse patterns on pump power and crystal rotation (i.e. kaleidoscopic patterns) was demonstrated in a 0.3 mm thick thin-slice LiNdP4O12 laser with sheet-like end-pumping. Pump-power-dependent high-speed self-pulsations were observed. The asymmetric optical confinement resulted in the formation of transverse patterns which were totally different from normal Hermite–Gaussian resonator modes. The interference among pairs of non-orthogonal transverse eigenmode fields, whose energy levels exhibited avoided crossing with increasing pump power, was shown to result in high-speed intensity modulations. A good numerical reproduction of the observed high-speed modulations was obtained with model equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.