Abstract

Transverse cracking is one of the more common distress manifestations in jointed concrete pavements. While the extent of transverse cracking is largely related to the specified joint spacing, there are several other primary design variables and distress mechanisms that can cause varying degrees of transverse cracking. These primary mechanisms and their associated variables are well-documented in the literature. However, all of these mechanisms often work on the pavement simultaneously over many years and, as a result, it has historically been difficult to calibrate prediction models with field data. The Strategic Highway Research Program’s Long-Term Pavement Performance (LTPP) program has collected a significant amount of condition survey data on more than 110 jointed plain concrete pavements (JPCP) and 65 jointed reinforced concrete pavements (JRCP) throughout North America over the last 7 years. The occurrence of transverse cracking in these sections is one of the principal distresses documented in the condition surveys and therefore provides an excellent data source for examining the relationships between the various primary distress mechanisms and the actual occurrence of distress in the field. Although it is premature to develop or calibrate purely “mechanistic” models based on the LTPP data, enough data have been collected to begin analyzing this distress and its association with the numerous prediction variables in the LTPP database. A complete analysis of the transverse cracking that has occurred in these LTPP test sections, along with their respective relationships with the primary prediction variables found in the primary distress mechanisms, is provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call