Abstract

The fabrication of nanopores in atomically thin graphene has recently been achieved, and translocation of DNA has been demonstrated. Taken together with an earlier proposal to use graphene nanogaps for the purpose of DNA sequencing, this approach can resolve the technical problem of achieving single-base resolution in electronic nucleobase detection. We have theoretically evaluated the performance of a graphene nanogap setup for the purpose of whole-genome sequencing, by employing density functional theory and the nonequilibrium Green's function method to investigate the transverse conductance properties of nucleotides inside the gap. In particular, we determined the electrical tunneling current variation at finite bias due to changes in the nucleotides orientation and lateral position. Although the resulting tunneling current is found to fluctuate over several orders of magnitude, a distinction between the four DNA bases appears possible, thus ranking the approach promising for rapid whole-genome sequencing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.