Abstract

Motivated by recent experiments, we analyse the stability of a three-dimensional Bose-Einstein condensate (BEC) loaded in a periodically driven one-dimensional optical lattice. Such periodically driven systems do not have a thermodynamic ground state, but may have a long-lived steady state which is an eigenstate of a "Floquet Hamiltonian". We explore collisional instabilities of the Floquet ground state which transfer energy into the transverse modes. We calculate decay rates, finding that the lifetime scales as the inverse square of the scattering length and inverse of the peak three- dimensional density. These rates can be controlled by adding additional transverse potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call