Abstract

This paper presents an analytical and numerical analysis of free and forced transversal vibrations of an elastically connected double-plate system. Analytical solutions of a system of coupled partial differential equations, which describe corresponding dynamical free and forced processes, are obtained using Bernoulli’s particular integral and Lagrange’s method of variation constants. It is shown that one-mode vibrations correspond to two-frequency regime for free vibrations induced by initial conditions and to three-frequency regime for forced vibrations induced by one-frequency external excitation and corresponding initial conditions. The analytical solutions show that the elastic connection between plates leads to the appearance of two-frequency regime of time function, which corresponds to one eigenamplitude function of one mode, and also that the time functions of different vibration modes are uncoupled, for each shape of vibrations. It has been proven that for both elastically connected plates, for every pair of m and n, two possibilities for appearance of the resonance dynamical states, as well as for appearance of the dynamical absorption, are present. Using the MathCad program, the corresponding visualizations of the characteristic forms of the plate middle surfaces through time are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.