Abstract

A flat of a matroid is cyclic if it is a union of circuits; such flats form a lattice under inclusion and, up to isomorphism, all lattices can be obtained this way. A lattice is a Tr-lattice if all matroids whose lattices of cyclic flats are isomorphic to it are transversal. We investigate some sufficient conditions for a lattice to be a Tr-lattice; a corollary is that distributive lattices of dimension at most two are Tr-lattices. We give a necessary condition: each element in a Tr-lattice has at most two covers. We also give constructions that produce new Tr-lattices from known Tr-lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.