Abstract

In the application of change detection satellite remote sensing images, synthetic aperture radar (SAR) images have become a more important data source. This paper proposes a new end-to-end SAR image change network architecture—TransUNet++SAR—that combines Transformer with UNet++. First, the convolutional neural network (CNN) was used to obtain the feature maps of the single time SAR images layer by layer. Tokenized image patches were encoded to extract rich global context information. Using improved Transformer for effective modeling of global semantic relations can generate rich contextual feature representations. Then, we used the decoder to upsample the encoded features, connected the encoded multi-scale features with the high-level features by sequential connection to learn the local-global semantic features, recovered the full spatial resolution of the feature map, and achieved accurate localization. In the UNet++ structure, the bitemporal SAR images are composed of two single networks, which have shared weights to learn the features of the single temporal image layer by layer to avoid the influence of SAR image noise and pseudo-change on the deep learning process. The experiment results show that the experimental effect of TransUNet++SAR on the Beijing, Guangzhou, and Qingdao datasets were significantly better than other deep learning SAR image change detection algorithms. At the same time, compared with other Transformer related change detection algorithms, the description of the changed area edge was more accurate. In the dataset experiments, the model had higher indices than the other models, especially the Beijing building change datasets, where the IOU was 9.79% higher and F1-score was 4.38% higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call