Abstract

Preeclampsia (PE) is a pregnancy-specific disorder characterized by new-onset hypertension and proteinuria that occurs after 20 weeks of gestation. It involves several organs and continues to be a leading cause of maternal and perinatal morbidity and mortality worldwide. Shallow trophoblast invasion is a common pathological feature of PE. Transthyretin (TTR) is a 56-kDa homotetrameric protein that binds thyroid hormone and retinol binding protein. Dysregulated TTR expression has been found in cases of PE. The aim of the present study was to determine the functional role of TTR in the migration and invasion of JEG-3 choriocarcinoma cells. JEG-3 cells were transfected with a plasmid construct expressing TTR (pCMV-Myc-TTR) or an empty plasmid (pCMV-Myc). Cell migration and invasion capacities were assessed by Transwell migration and invasion assays, respectively. These experiments demonstrated that TTR overexpression significantly increased the migration and invasion potential of JEG-3 cells. Matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases capable of degrading a wide range of extracellular matrix components. Western blot analysis revealed that TTR overexpression resulted in significantly increased levels of MMP2 and MMP9 in JEG-3 cells. In conclusion, our findings suggest an important role for TTR in regulating trophoblast invasion and migration, representing a possible underlying pathological and molecular mechanisms of PE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.