Abstract
Mutations in transthyretin (TTR) are associated with familial amyloid polyneuropathy, a neurodegenerative disorder characterized by TTR deposition in the PNS. The aim of this study was to unravel whether TTR has a role in nerve physiology that could account for its preferential accumulation in the PNS, when mutated. The sensorimotor performance of wild-type and TTR knockout (KO) littermate mice was compared and showed impairment in mice lacking TTR. Given the possibility that, upon regeneration, the consequences arising from TTR absence might be exacerbated, nerve crush was performed in both strains. TTR KO mice presented delayed functional recovery resulting from decreased number of myelinated and unmyelinated fibers. Moreover, in transgenic mice in a TTR KO background, expressing human TTR in neurons, this phenotype was rescued, reinforcing that TTR enhances nerve regeneration. In vitro assays showed that neurite outgrowth and extension were decreased in the absence of TTR, probably underlying the decreased number of regenerating axons in TTR KO mice. Our findings demonstrate that TTR participates in nerve physiology and that it enhances nerve regeneration. Moreover, the assignment of a TTR function in nerve biology and repair, may explain its preferential deposition, when mutated, in the PNS of familial amyloid polyneuropathy patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.