Abstract
Exercise improves obesity-induced insulin resistance and metabolic disorders via mechanisms that remain unclear. Here, we show that the levels of the hepatokine transthyretin (TTR) in circulation are elevated in insulin-resistant individuals including high-fat diet (HFD)-induced obese mice, db/db mice, and patients with metabolic syndrome. Liver Ttr mRNA and circulating TTR levels were reduced in mice by treadmill training, as was the TTR levels in quadriceps femoris muscle; however, AMP-activated protein kinase (AMPK) signaling activity was enhanced. Transgenic overexpression of TTR or injection of purified TTR triggered insulin resistance in mice fed on regular chow (RC). Furthermore, TTR overexpression reduced the beneficial effects of exercise on insulin sensitivity in HFD-fed mice. TTR was internalized by muscle cells via the membrane receptor Grp78 and the internalization into the quadriceps femoris was reduced by treadmill training. The TTR/Grp78 combination in C2C12 cells was increased, whereas the AMPK activity of C2C12 cells was decreased as the TTR concentration rose. In addition, Grp78 silencing prevented the TTR internalization and reversed its inhibitory effect on AMPK activity in C2C12 cells. Our study suggests that elevated circulating TTR may contribute to insulin resistance and counteract the exercise-induced insulin sensitivity improvement; the TTR suppression might be an adaptive response to exercise through enhancing AMPK activity in skeletal muscles.NEW & NOTEWORTHY Exercise improves obesity-induced insulin resistance via mechanisms that remain unclear. The novel findings of the study are that circulating TTR (a hepatokine) level is decreased by exercise, and the elevated circulating TTR, as was the elevated transthyretin internalization mediated by Grp78, counteracts the exercise-induced insulin sensitivity by downregulating AMPK activity in skeletal muscle of obese mice. These data suggest that TTR suppression might be an adaptive response to exercise through the crosstalk between liver and muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.