Abstract

Standards, including IEC 60479-1 and -2, provide current-based ventricular fibrillation thresholds (VFT) for stimuli durations between 0.1 ms and 10 s. It has been established that the amount of electrical charge, not the current calculated by root-mean-square, is most representative of the effects of cardiac stimulation. There are no unified models that present transthoracic charge VFTs for a wide range of stimuli durations. This work proposes a new unified charge model applicable to transthoracic stimuli durations ranging over 1 μs - 300 s. VFTs were compiled from our previous animal work and from other published reports, including from the studies that provided the raw data for IEC 60479-1 and -2. Our study goal was to cover a wide range of stimuli durations, for which reliable data exists. Consistent data were found for stimuli durations covering the range of 1 μs - 300 s where VFTs were expressed as charge. The model predicted a transthoracic charge VFT of 1 mC at 1 μs duration. The charge VFT increased with stimulus duration and reached 10 C at 300 s. Presenting the first charge-based transthoracic VFT model covering stimuli durations over 1 μs - 300 s, we found 3 behavioral regions of charge VFT vs. For short stimuli durations, 1 μs - 10 ms, VFTs followed a classic Weiss charge strength-duration curve. For long stimuli, longer than 5 s, charge VFTs can be approximated using a 38 mArms constant current model. From 10 ms to 5 s, charge VFTs tracked through a transition zone that could be approximated as a constant charge model Q≈100 mC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call