Abstract

Successful treatment of age-related macular diseases requires an effective controlled drug release system with less invasive route of administration in the eye to reduce the burden of frequent intravitreal injections for patients. In this study, we developed an episcleral implantable device for sustained release of ranibizumab, and evaluated its efficacy on suppression of laser-induced choroidal neovascularization (CNV) in rats. We tested both biodegradable and non-biodegradable sheet-type devices consisting of crosslinked gelatin/chitosan (Gel/CS) and photopolymerized poly(ethyleneglycol) dimethacrylate that incorporated collagen microparticles (PEGDM/COL). In vitro release studies of FITC-labeled albumin showed a constant release from PEGDM/COL sheets compared to Gel/CS sheets. The Gel/CS sheets gradually biodegraded in the sclera during the 24-week implantation; however, the PEGDM/COL sheets did not degrade. FITC-albumin was detected in the retina during 18 weeks implantation in the PEGDM/COL sheet-treated group, and was detected in the Gel/CS sheet-treated group during 6 weeks implantation. CNV was suppressed 18 weeks after application of ranibizumab-loaded PEGDM/COL sheets compared to a placebo PEGDM/COL sheet-treated group, and to the intravitreal ranibizumab-injected group. In conclusion, the PEGDM/COL sheet device suppressed CNV via a transscleral administration route for 18 weeks, indicating that prolonged sustained ranibizumab release could reduce the burden of repeated intravitreal injections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.