Abstract
BackgroundSymptoms of psychosis in schizophrenia reflect disturbances in sense of agency—difficulty distinguishing internally from externally generated sensory and perceptual experiences. One theory attributes these anomalies to a disruption in corollary discharge (CD), an internal copy of generated motor commands used to distinguish self-movement–generated sensations from externally generated stimulation. MethodsWe used a transsaccadic shift detection paradigm to examine possible deficits in CD and sense of agency based on the ability to perceive visual changes in 31 schizophrenia patients (SZPs) and 31 healthy control subjects. We derived perceptual measures based on manual responses indicating the transsaccadic target shift direction. We also developed a distance-from-unity-line measure to quantify use of CD versus purely sensory (visual) information in evaluating visual changes in the environment after an eye movement. ResultsSZPs had higher perceptual thresholds in detecting shift of target location than healthy control subjects, regardless of movement direction or amplitude. Despite producing similar hypometric saccades, healthy control subjects overestimated target location, whereas SZPs relied more on the experienced visual error and consequently underestimated the target position. We show that in SZPs the postsaccadic judgment of the initial target location was largely aligned with the measure based only on visual error, suggesting a deficit in the use of CD. This CD deficit also correlated with positive schizophrenia symptoms and disturbances in sense of agency. ConclusionsThese results provide a novel approach in quantifying abnormal use of CD in SZPs and provide a framework to distinguish deficits in sensory processing versus defects in the internal CD-based monitoring of movement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.