Abstract
Accurate identification of RNA modification sites is of great significance in understanding the functions and regulatory mechanisms of RNAs. Recent advances have shown great promise in applying computational methods based on deep learning for accurate prediction of RNA modifications. However, those methods generally predicted only a single type of RNA modification. In addition, such methods suffered from the scarcity of the interpretability for their predicted results. In this work, a new Transformer-based deep learning method was proposed to predict multiple RNA modifications simultaneously, referred to as TransRNAm. More specifically, TransRNAm employs Transformer to extract contextual feature and convolutional neural networks to further learn high-latent feature representations of RNA sequences relevant for RNA modifications. Importantly, by integrating the self-attention mechanism in Transformer with convolutional neural network, TransRNAm is capable of not only capturing the critical nucleotide sites that contribute significantly to RNA modification prediction, but also revealing the underlying association among different types of RNA modifications. Consequently, this work provided an accurate and interpretable predictor for multiple RNA modification prediction, which may contribute to uncovering the sequence-based forming mechanism of RNA modification sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.