Abstract
Current Escherichia coli antibiofilm treatments comprise a combination of antibiotics commonly used against planktonic cells, leading to treatment failure. A better understanding of the genes involved in biofilm formation could facilitate the development of efficient and specific new antibiofilm treatments. A total of 2578 E. coli mutants were generated by transposon insertion, of which 536 were analysed in this study. After sequencing, Tn263 mutant, classified as low biofilm-former (LF) compared to the wild-type (wt) strain (ATCC 25922), showed an interruption in the purL gene, involved in the de novo purine biosynthesis pathway. To elucidate the role of purL in biofilm formation, a knockout was generated showing reduced production of curli fibres, leading to an impaired biofilm formation. These conditions were restored by complementation of the strain or addition of exogenous inosine. Proteomic and transcriptional analyses were performed to characterise the differences caused by purL alterations. Thirteen proteins were altered compared to wt. The corresponding genes were analysed by qRT-PCR not only in the Tn263 and wt, but also in clinical strains with different biofilm activity. Overall, this study suggests that purL is essential for biofilm formation in E. coli and can be considered as a potential antibiofilm target.
Highlights
Some of the well-characterised virulence factor genes among E. coli strains during the initial stages include type 1 fimbriae or pili, curli fimbriae, and flagella
In the present study we focus on protein expression and the comparison of gene transcription between an E. coli wt strain and the isogenic defective biofilm mutants (Tn) produced by transposon insertion
Since this study focused on low-forming strains after transposon insertion, the Tn263 and Tn463 mutants were selected for DNA sequencing
Summary
11..IInntrtroodduucctitoionn iptEmpibcanhna.anlaeeotinctdnihnbohoniaodlEldnondiEolgugsesguccosecooseoicasdhnttnnhantcireiresicagiarccria,oitauuaicbalbacllshlaslahmaageimonscicatuaeiiittdonicccelepccaoranrrtorsoteliiunoliiiaapsbisosiebtraiiaseni[oosoinnn5oanclpiaa–ddolneaworl9gwstftofg]oesaayea.cerysvllaveEtll[oen-liso[1.-ncsxu1sdu]ccehta].rhaorrp.talIanlhtatnisIrhoihrdenaingeasrtecftrthctohtehoehhtee[rsoexwee5romtsrthii–fstsrishnoaust9aebauaetr]mbidyilms.ndmoyiatmpfnnameEarpnrfetsoni.oeriictebofcodcir-bncrrontdoluoeoioiadoovucoldodliynriicfrnyngbi,isgrn,ngggalmeasomfrgndvuencoooiceiovcidsbwtsstlhsmailitlmtctsoosmaageongfomslufirldausnrrseutiset,-bqncsKr-qrrueiriueeuoKnfelacsreslfieasnhseipnaindrl,eddetmynrtae-lceleylBdsnytt-insrivf1tuvpBuoatu2iEsecner1rE,setmli.c2gewyn.dtic,dciniaoh[wvnoa2rcflaileigesy–cehislcphl4aypicltatc]rsiorar.l[ohealaemr2aHvncebvo–abetsmooer4reonei(nsr]wurnUt.astbeaHneeftcTsitceonviooosooIctrteleifsrtlyiwoeir)yinaol,o,snmlmetns.mmniidvoisaM-ossumeaeofladortnr(dditie,UcrieioieunsmnrolEnlToogrgan.aiibmIninncbtsntbihod)igygaedlsy,eli, cboimofimlmunsiatirees.weMlli-corrogbainalizebdiocfiolmmsmuanreitiwesewll-hoerrgeamnizicerdoocrgoamnmisumnsitliievse ewmhbeereddmedicirnooarsgealnf-ipsmrosdulicveed eemxtbreadcedleludlainr paosleylfm-perroicdsuucbesdtaenxctrea(cEePllSu)lawr hpioclhympreortieccstus basgtaainncset a(EdPvSe)rsweheincvhirpornomtecetnstaalgcaoinnsdtiatidovnesr[s6e]. eBnivoifirlomnsmaernetuabl icqounitdoiutiso,nbsei[n6g].foBuionfdilmatstaacrheedubtoiqbuioitloougsic,ableoirnignefrotusnudrfaactteascihneddivteorsbeioelcoogloicgailcaolrniincherets. sIunrfaadcdeistiionnd, iEv.ecroslei ebcioofilolgmicsaclanuiscehesse.vIenraaldmdietdioicna, lEd. ecovliicbei-orefillamtesdcianufseectsieovnesr, ainl mclueddiincagl jdoeinvticien-freecltaiotends, iinnftercatvioanssc,ulianrccluadthinetgerjoininfetctiinofnesc,tiaonnds,cainthtreatevra-sacsusloacriacteadthuetreinr airnyfetrcaticotnins,feacntidoncsa(tChAetUerT-aI)ss[o6,c1ia0t,1e1d]. uieUrtnxhrectindenrrfuaeaobaccrraeseytceldultduentprlrtaaeaiotanrcelteelwmrytrai,inaantbtthfcrieioieiocnxntfitiot(olohEmnafeCnst-hftMboie(ibrCo)aimfioAn[t1litUimni2cbg,sTs1ioId3oe)t]uivr.cge[aL6tadth,ion1ker0ioetst,hwum1he1geis]srh.eeihmt,dUhautmevhnceebfueoidnaobretnfipauclesnmitnyneaesrctettierxearelamtyartw,asioectibhtndehilroloiotunffouilltlagtmherhhre-emafavnoabnacrtitmreroiiibfoxitiinuolo(mgEstaiCscdnoMteetrhifvgb)eraaion[odn1ucti2eeigs,cm1htmsh3st]edeh.cuehLihmeabiakvimntoeeoiwfusimltanimhsneese,, ssyuscthemastbhyroauvgohidvinagritohuescdomefepnlecme emnetcshyasnteimsmasn, dsupchhagaoscbyytosaivsooirdbinygacthtiengcoams aplpehmyesnictalsybsatrermiera[n12d]. pThhaegroecfoyrteo,sitsheorrebiys aanctuinngmaest anepehdystoicaellubcairdraieter [n1e2w]. Several studies have described the mechanisms and gene regulation involved during the three general phases of biofilm formation: attachment, development, and dispersal [8,14,15,16,17]. In the present study we focus on protein expression and the comparison of gene transcription between an E. coli wt strain and the isogenic defective biofilm mutants (Tn) produced by transposon insertion. Taking this into account, the aim of this work was to identify new genes involved in biofilm formation in E. coli using phenotypic and molecular tools
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.