Abstract
Advances in DNA sequencing technologies have produced an ever increasing number of sequenced genomes. However, many of the genes identified in these sequencing efforts have unknown functions or functions inferred based upon sequence homology, highlighting the necessity for functional gene analysis. Mutagenesis combined with phenotypic analyses remains a key mechanism for identifying and establishing gene function. Activation tagging is a mutagenic process that uses altered gene expression, usually gene overexpression, to generate mutant phenotypes. We have developed an activation tagging system in barley (Hordeum vulgare L.) based upon a maize (Zea mays L.) transposable element that carries two highly expressed cereal promoters. Insertion of this mobile genetic element in the genome can lead to insertional gene inactivation, gene overexpression and gene silencing through the production of antisense transcripts. This transposable element system has also been introduced into both wheat (Triticum aestivum L.) and maize and transposon mobility observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.