Abstract

BackgroundVerticillium dahliae (Vd) and Verticillium albo-atrum (Va) are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants. To date, no sexual stage has been identified in either microorganism suggesting that somatic mutation is a major force in generating genetic diversity. Whole genome comparative analysis of the recently sequenced strains VdLs.17 and VaMs.102 revealed that non-random insertions of transposable elements (TEs) have contributed to the generation of four lineage-specific (LS) regions in VdLs.17.ResultsWe present here a detailed analysis of Class I retrotransposons and Class II “cut-and-paste” DNA elements detected in the sequenced Verticillium genomes. We report also of their distribution in other Vd and Va isolates from various geographic origins. In VdLs.17, we identified and characterized 56 complete retrotransposons of the Gypsy-, Copia- and LINE-like types, as well as 34 full-length elements of the “cut-and-paste” superfamilies Tc1/mariner, Activator and Mutator. While Copia and Tc1/mariner were present in multiple identical copies, Activator and Mutator sequences were highly divergent. Most elements comprised complete ORFs, had matching ESTs and showed active transcription in response to stress treatment. Noticeably, we found evidences of repeat-induced point mutation (RIP) only in some of the Gypsy retroelements. While Copia-, Gypsy- and Tc1/mariner-like transposons were prominent, a large variation in presence of the other types of mobile elements was detected in the other Verticillium spp. strains surveyed. In particular, neither complete nor defective “cut-and-paste” TEs were found in VaMs.102.ConclusionsCopia-, Gypsy- and Tc1/mariner-like transposons are the most wide-spread TEs in the phytopathogens V. dahliae and V. albo-atrum. In VdLs.17, we identified several retroelements and “cut-and-paste” transposons still potentially active. Some of these elements have undergone diversification and subsequent selective amplification after introgression into the fungal genome. Others, such as the ripped Copias, have been potentially acquired by horizontal transfer. The observed biased TE insertion in gene-rich regions within an individual genome (VdLs.17) and the “patchy” distribution among different strains point to the mobile elements as major generators of Verticillium intra- and inter-specific genomic variation.

Highlights

  • Verticillium dahliae (Vd) and Verticillium albo-atrum (Va) are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants

  • Transposable elements in Verticillium dahliae genome Using a combination of bioinformatics predictions and manual inspections, we identified 56 complete Class I retrotransposons and 34 Class II “cut-and-paste” DNA transposons in the VdLs.17 genome

  • A conserved CARYYA sequence has been shown to be important for the stop codon readthrough [24], a search of VdLTRE5 showed that it lacked this canonical sequence motif

Read more

Summary

Introduction

Verticillium dahliae (Vd) and Verticillium albo-atrum (Va) are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants. Verticillium dahliae (Vd) and V. albo-atrum (Va) (Eukaryota, Fungi, Ascomycota) cause very disruptive vascular diseases in over 400 plant species, including vegetable, ornamental and tree crops [1]. These microorganisms penetrate the root system of their hosts and induce typical leaf wilt symptoms by spreading throughout the xylem vessels and disrupting water transport. Comparative analysis of the recently sequenced genomes of the isolates VdLs. (33.8 Mb) and VaMs.102 (32.8 Mb), showed that they are 97% identical and that VdLs. contains regions in chromosomes three and four that are not present in the Va isolate [2]. These lineage-specific (LS) regions, which encompass about 3.5% of the fungal genome, comprise about 350 protein-coding genes and are enriched in repetitive sequences corresponding to both previously known [3,4] and as-yet uncharacterized transposon-like sequences [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call