Abstract

Conventional transport-of-intensity equation (TIE) based phase imaging is performed in wide-field microscopes. In this paper, we present phase and fluorescence dual-modality imaging in a confocal laser scanning microscopy (CLSM) system. To perform phase imaging, the depth of field (DOF) of the CLSM system was extended by using a tunable acoustic gradient index of refraction (TAG) lens. Under transmitted illumination, a few intensity images of a sample at different defocusing distances were recorded. The phase image is reconstructed from these intensity images by using transport-of-intensity equation (TIE). Fluorescence image is obtained by 3D scan of the sample, providing a 3D sectioned fluorescence image. The obtained dual-modality images with pixel-to-pixel correspondence provide for the same sample complementary information (structural/functional), to extract complex biological parameters. We demonstrate the combination of the two imaging modalities enables standalone determination of the refractive index of live cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call