Abstract
Transporters are the main determinant for pharmacokinetics characteristics of drugs, such as absorption, distribution, and excretion of drugs in humans. However, it is difficult to perform drug transporter validation and structure analysis of membrane transporter proteins by experimental methods. Many studies have demonstrated that knowledge graphs (KG) could effectively excavate potential association information between different entities. To improve the effectiveness of drug discovery, a transporter-related KG was constructed in this study. Meanwhile, a predictive frame (AutoInt_KG) and a generative frame (MolGPT_KG) were established based on the heterogeneity information obtained from the transporter-related KG by the RESCAL model. Natural product Luteolin with known transporters was selected to verify the reliability of the AutoInt_KG frame, its ROC-AUC (1:1), ROC-AUC (1:10), PR-AUC (1:1), PR-AUC (1:10) are 0.91, 0.94, 0.91 and 0.78, respectively. Subsequently, the MolGPT_KG frame was constructed to implement efficient drug design based on transporter structure. The evaluation results showed that the MolGPT_KG could generate novel and valid molecules and that these molecules were further confirmed by molecular docking analysis. The docking results showed that they could bind to important amino acids at the active site of the target transporter. Our findings will provide rich information resources and guidance for the further development of the transporter-related drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Structural Biotechnology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.