Abstract

The release of GABA from amacrine and interplexiform cells after exposure to excitatory amino acids (EAAs) agonists was investigated by immunohistochemistry. Cebus monkey retinas were treated in vitro with 50 μM kainate (KA) or 5 mM l-Glutamate ( l-Glu), for 30 min at 37°C. The effects of the EAAs were measured by detecting immunocytochemically the GABA remaining in the tissue after stimulation. l-Glu and KA reduced the number of GABA-immunoreactive perikarya in the innermost part of the inner nuclear layer by approximately 60% and 80%, respectively, as compared to controls. The cell processes in the inner plexiform layer (IPL) were restricted to only three defined bands in the strata 1, 3 and 5, as compared to an intense and homogeneous labeling in the IPL of the untreated retinas. The effect of KA was inhibited by 100 μM CNQX, 100 μM NNC-711, or when Na + was replaced by choline. The release of GABA was Ca 2+-independent, suggesting the mobilization of GABA from the cytoplasmic pool of this neurotransmitter. At least two subsets of retinal neurons including amacrine and interplexiform cells retained GABA-immunoreactivity after stimulation with EAAs, as revealed by glutamic acid decarboxylase (GAD) immunocytochemistry. Our results suggest that non-NMDA receptor activation by KA and glutamate are associated with the efflux of GABA from cells of the inner retina (amacrine and interplexiform cells). The data also show that cells containing GAD-67 released GABA via its transporter, while cells containing exclusively GAD-65 apparently did not release the neurotransmitter by the reversal of the transporter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.