Abstract

To better understand the function of transporter in heavy metal detoxification of bacteria, the transporters associated with heavy metal detoxification in S. rhizophila JC1 were analyzed, among which four members were verified by RT-qPCR. In addition, the removal rates of four single metal ions (Cr6+, Cu2+, Zn2+, Pb2+) and polymetallic ions by strain JC1 were studied, respectively. We also researched the physiological response of strain JC1 to different metal stress via morphological observation, elemental composition, functional group and membrane permeability analysis. The results showed that in the single metal ion solution, removal capacities of Cu2+ (120 mg/L) and Cr6+ (80 mg/L) of S. rhizophila JC1 reached to 79.9% and 89.3%, respectively, while in polymetallic ions solution, the removal capacity of each metal ion all decreased, and in detail, the adsorption capacity was determined Cr6+>Cu2+>Zn2+>Pb2+ under the same condition. The physiological response analyses results showed that extracellular adsorption phenomena occurred, and the change of membrane permeability hindered the uptake of metal ions by bacteria. The analysis of transporters in strain JC1 genome illustrated that a total of 323 transporters were predicted. Among them, two, six and five proteins of the cation diffusion facilitator, resistance-nodulation-division efflux and P-type ATPase families were, respectively, predicted. The expression of corresponding genes showed that the synergistic action of correlative transporters played important roles in the process of adsorption. The comparative genomics analysis revealed that S. rhizophila JC1 has long-distance evolutionary relationships with other strains, but the efflux system of S. rhizophila JC1 contained the same types of metal transporters as other metal-resistant bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call