Abstract
Transportation systems are critical lifelines and vulnerable to various disruptions, including unforeseen social events such as public health crises, and have far-reaching social impacts such as economic instability. This paper aims to determine the key factors influencing the severity of traffic accidents in four different stages during the pre- and the post Covid-19 pandemic in Illinois, USA. For this purpose, a Random Forest-based model is developed, which is combined with techniques of explainable machine learning. The results reveal that during the pandemic, human perceptual factors, notably increased air pressure, humidity and temperature, play an important role in accident severity. This suggests that alleviating driver anxiety, caused by these factors, may be more effective in curbing crash severity than conventional road condition improvements. Further analysis shows that the pandemic leads notable shifts in residents' daily travel time and accident-prone spatial segments, indicating the need for increased regulatory measures. Our findings provide new insights for policy makers seeking to improve transportation resilience during disruptive events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part A: Policy and Practice
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.