Abstract

More frequent extreme weather events due to climate change impose significant challenges on the post-disaster restoration of distribution systems with significant penetration of renewable generations. To address this challenge, this paper investigates a restoration scheme for distribution networks integrated with renewable generations, and transportable energy storage systems moving along a transportation network, such as railway or road network, are used to support the network restoration after the fault event. To achieve this, for given fault conditions, topological reconfiguration is first facilitated via the soft open point (SOP) technology, and local renewable generators and loads are rapidly regrouped to form microgrids for post-disaster restoration. Then, assisted with transportable energy storage, the resources within the microgrids can be dispatched more efficiently, facilitating a more efficient post-disaster recovery process. To enable a cost-effective restoration of the distribution network, an economic model is formulated with the aim of minimizing the economic losses during the post-disaster restoration process. Case studies considering a significant number of failure scenarios show that the proposed transportable energy storage-assisted restoration scheme can effectively minimize costs during the post-disaster period considering various load types across different areas. This scheme not only achieves cost-effective post-disaster restoration but also ensures compliance with the constraints of the electrical networks, achieving up to 93.3% recovery cost reduction and 74.25% increase in critical load restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call