Abstract

We study the effect of a dot-lead interaction on transport through a quantum dot hybridized to two semi-infinite Luttinger-liquid leads. A bosonization approach is applied to treat the interaction between charge fluctuations on the dot and the dynamically generated image charge in the leads. The nonequilibrium distribution function of the dot and the tunneling current are computed within a master-equation approach. The presence of the excitonic dot-lead coupling is found to enhance transport in the vicinity of the Coulomb-blockade threshold. This behavior is in contrast to the usual power-law suppression of electronic tunneling which is found if this interaction is ignored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.