Abstract
Transport through a mixed-valence system in the sequential-tunneling region is investigated using the master equation method and a simple two-site Peierls-Hubbard model that includes electron-phonon (e-p) coupling, electron hopping, and electron-electron (e-e) repulsion. The characteristics of Coulomb diamonds in the conductance spectra under three regimes are discussed. In the regime of zero e-p coupling, we found that the widths of Coulomb diamonds are dominated by the competition of electron-hopping and Coulomb repulsion. In the regime of weak and intermediate e-p coupling, by virtue of the normal-mode transformation we found that coupling to the symmetric-mode decreases the widths of Coulomb diamonds. In the regime of strong e-p coupling, an analytical expression for the widths of Coulomb diamonds can be derived using the small polaron transformation. The derived formula provides a new way to estimate e-e interactions and e-p couplings experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Chemical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.