Abstract

The current-voltage (I/V) profiles of Ventricaria (formerly Valonia) membranes were measured at a range of external potassium concentrations, [K(+)](o), from 0.1 to 100 mm. The conductance-voltage (G/V) characteristics were computed to facilitate better resolution of the profile change with time after exposure to different [K(+)](o). The resistance-voltage (R/V) characteristics were computed to attempt resolution of plasmalemma and tonoplast. Four basic electrophysiological stages emerged: (1) Uniform low resistance between -60 and +60 mV after the cell impalement. (2) High resistance between +50 and +150 for [K(+)](o) from 0.1 to 1.0 mm and hypotonic media. (3) High resistance between -150 and -20 mV for [K(+)](o) of 10 mm (close to natural seawater) and hypertonic media. (4) High resistance between -150 and +170 mV at [K(+)](o) of 100 mm. The changes between these states were slow, requiring minutes to hours and sometimes exhibiting spontaneous oscillations of the membrane p.d. (potential difference). Our analysis of the I/V data supports a previous hypothesis, that Ventricaria tonoplast is the more resistive membrane containing a pump, which transports K(+) into the vacuole to regulate turgor. We associate state (1) with the plasmalemma conductance being dominant and the K(+) pump at the tonoplast short-circuited probably by a K(+) channel, state (2) with the K(+) pump "off" or short-circuited at p.d.s more negative than +50 mV, state (3) with the K(+) pump "on, " and state (4) with the pump dominant, but affected by high K(+). A model for the Ventricaria membrane system is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.