Abstract
The polyfluorene/poly(p-phenylenevinylene) copolymer based hole-only devices are fabricated and the current–voltage characteristics are measured as a function of temperature. The hole current is fitted well with space-charge limited and field-dependent mobility model, which provides a direct measurement of the hole mobility μ as a function of electric field E and temperature. The mobility is fitted with existing Gill’s model, Gaussian disorder model, correlated Gaussian disorder model and Brownian motion model. Energy hopping time and activation energy are obtained from Brownian motion model. Microscopic transport parameters are derived and a consistent picture of the influence of the molecular structure of the polymer on the charge transport is depicted. For the polyfluorene/poly(p-phenylenevinylene) copolymer, although with a high degree of irregularity in structure and larger energetic disorder, the two bulky structure favors charge delocalization and remove defect sites, results in a higher mobility. The results suggest space-charge limited and field-dependent mobility model combine with various mobility model, include Brownian motion model, is a useful technique to study charge transport in thin films with thicknesses close to those used in real devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.