Abstract

ZnO nanotetrapods (ZnO NTs) with a non-centrosymmetric crystal structure consisting of four 1-D arms interconnected together through a central crystalline core, introduce interesting piezoelectric semiconducting responses in nanorods in the bent state. Considering the widespread applications of nanotetrapods in semiconductor devices, it becomes very crucial to establish a coupled model based on piezoelectric and piezotronic effects to investigate the carrier transport mechanism, which is being reported here in detail for the first time. In this work, we established a multiphysics coupled model of stress-regulated charge carrier transport by the finite element method (FEM), which considers the full account of the wurtzite (WZ) and zinc blende (ZB) regions as well as the spontaneous polarization dependence and the dependence of the material properties on the arm orientation. It is discovered that the forward gain of ZnO NT in the lateral force working mode is almost 50 % higher than that in the nanorod or in the normal force working mode while the reverse current is reduced to negligible. Through the simulation calculations and corresponding analysis, it is confirmed that the developed piezoelectric polarization charges are able to regulate the transport and distribution of carriers in ZnO crystal, which lays a theoretical foundation for the application of piezo-semiconductive ZnO NT devices in advanced technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call