Abstract

We revisit our study of general transport operator with general force field and general invariant measure by considering, in the $L^1$ setting, the linear transport operator $\mathcal{T}_H$ associated to a linear and positive boundary operator $H$ of unit norm. It is known that in this case an extension of $\mathcal{T}_H$ generates a substochastic (i.e. positive contraction) $C_0$-semigroup $(V_H(t))_{t\geq 0}$. We show here that $(V_H(t))_{t\geq 0}$ is the smallest substochastic $C_0$-semigroup with the above mentioned property and provides a representation of $(V_H(t))_{t \geq 0}$ as the sum of an expansion series similar to Dyson-Phillips series. We develop an honesty theory for such boundary perturbations that allows to consider the honesty of trajectories on subintervals $J \subseteq [0,\infty)$. New necessary and sufficient conditions for a trajectory to be honest are given in terms of the aforementioned series expansion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.