Abstract
Abstract The GFDL “SKYHI” general circulation model has been used to simulate the effect of the Antarctic “ozone hole” phenomenon on the radiative and dynamical environment of the lower stratosphere. Both the polar ozone destruction and photochemical restoration chemistries are calculated by parameterized simplifications of the still somewhat uncertain chemical processes. The modeled total column ozone depletions are near 25% in spring over Antarctica, with 1% depletion reaching equatorial latitudes by the end of the 4½–year model experiment. In the lower stratosphere, ozone reductions of 5% reach to the equator. Large coolings of about 8 K are simulated in the lower stratosphere over Antarctica in late spring, while a general cooling of about 1–1.5 K is present throughout the Southern Hemisphere lower stratosphere. The model atmosphere experiences a long-term positive temperature-chemical feedback because significant ozone reductions carry over into the next winter. The overall temperature response to th...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.