Abstract

We study electrons tunneling through a double-magnetic-barrier structure on the surface of monolayer graphene. The transmission probability and the conductance are calculated by using the transfer matrix method. The results show that the normal incident transmission probability is blocked by the magnetic vector potential and the Klein tunneling region depends strongly on the direction of the incidence electron. The transmission probability and the conductance can be modulated by changing structural parameters of the barrier, such as width and height, offering a possibility to control electron beams on graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call