Abstract

The transport properties of incompatible blends of poly(ethylene terephthalate) (PET) and a thermotropic liquid crystalline polymer (TLCP) composed of 40 mol% of PET and 60 mol% of p-hydroxybenzoic acid (Rodrun 3000) have been investigated using dichloromethane as permeant. Films, obtained by a blown film extrusion process, were analyzed and compared with the same samples stored 2 and 15 days at 60°C. With respect to the as-blown films, blends submitted to physical aging show a decrease in permeability by a percentage that increases with the amount of the LC phase present and a larger contribution derived from the polymeric matrix. The decrease of permeability is essentially attributed to a lowering of sorption because diffusional behavior for the different samples is the same.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.