Abstract

Syndiotactic polypropylene (sPP) nanocomposites were obtained by melt blending synthetic fluorohectorite modified octadecyl ammmonium ions (OLS), and maleic-anhydride-grafted isotactic polypropylene (iPP-g-MA) as compatibilizer. The composition of the inorganic material was varied between 5 and 20 w/w%. Films of the composites were obtained by hot press molding the pellets. Melt-direct polymer intercalation of sPP into the OLS gave rise to nanocomposites in which the silicate layers were delaminated at low clay contents, and ordered to intercalated structures at the highest clay content. The elastic modulus was higher than for the pure polymer in a wide temperature range and increased with the inorganic content. The transport properties were measured for dichloromethane and n-pentane. The sorption was reduced compared to pure sPP. There were not significative differences between the samples having different inorganic contents. The diffusion coefficient decreased with increasing clay content. Permeability ( P) showed a strong decreasing dependence on the clay content. The improvement of the barrier properties was largely caused by the reduced diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.