Abstract

The influence of electron heating compared to ion heating on plasma performance has been analysed in order to make valid projections towards future devices. The capabilities of the newly upgraded electron cyclotron resonance heating system at ASDEX Upgrade make this analysis feasible by replacing neutral beam injection. Dominantly electron heated plasmas are analysed and compared to dominantly ion heated plasmas. It is investigated if they behave systematically different or if the change of heated species is fully compensated by heat exchange from electrons to ions. Studies of plasmas at high collisionalities are presented in Sommer et al (2012 Nucl. Fusion 52 114018). Here, these former investigations are extended towards lower collisionalities. The global plasma parameters show a slight reduction with increasing electron heating arising from a significant decrease of the ion temperature, whereas the electron temperature profile is unchanged. The density profile shows a strong peaking which remains unchanged when modifying the heating mix. The power balance analysis shows an important impact of the heat exchange between electrons and ions. The electron and ion temperatures and the plasma density are modelled with the transport model TGLF. The experimental observations are reproduced verifying the applied code. Linear gyrokinetic calculations with GS2 found the ion temperature gradient mode to be the dominant microinstability in all analysed cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.