Abstract

We have studied the transport properties of a cholesteric liquid crystal by molecular dynamics simulation. The molecules consist of six soft ellipsoids of revolution, the axes of which are perpendicular to the line connecting their centres of symmetry. The angle between the symmetry axes of two adjacent ellipsoids is 7.5°, so the molecules are twisted. At high densities they form a cholesteric phase where their twist axes are oriented around the cholesteric axis and the symmetry axes of the ellipsoids are approximately parallel to the local director. We have been particularly interested in thermomechanical coupling or the Lehmann effect, which arises when a temperature gradient parallel to the cholesteric axis induces a torque that rotates the director. The converse is also possible: rotation of the director can drive a heat current. The thermal conductivity, the twist viscosity, the cross-coupling coefficient between the temperature gradient and the torque, and the cross-coupling coefficient between the director angular velocity and the heat current have been calculated by non-equilibrium molecular dynamics simulation methods (NEMD) and by evaluation of the Green-Kubo relations from equilibrium simulations. Two ensembles have been utilized: the ordinary canonical ensemble and another ensemble where the director angular velocity is constrained to be a constant of motion. All the methods give consistent results for the twist viscosity and the thermal conductivity. The NEMD estimates of the cross-coupling coefficients agree within a relative error of 20%. This is consistent with the Onsager reciprocity relations that state that the two cross-coupling coefficients should be equal. The relative error of the Green-Kubo estimates is about 100% even though the order of magnitude is the same as that of the NEMD estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.