Abstract
Blends of poly(ε-caprolactone) (PCL) with chitosan and a whey-protein-isolate (WPI) were prepared by solution mixing and film casting. The purpose was to increase the water vapour resistivity of chitosan and whey by blending them with a hydrophobic biodegradable polymer. The water vapour transmission rate was determined by a standard technique and by a new technique based on microcalorimetry. The blends were characterised by scanning electron microscopy (SEM), density measurements and thermogravimetry. Oxygen permeability was measured on the pure components and on some of the blends. The incorporation of PCL yielded a pronounced decrease in water vapour transmission rate of both chitosan and the WPI measured at a relative humidity gradient of 11 to 0%. A volume content of 17–18% of PCL lowered the water vapour transmission rate by 70–90%. It was found that the majority of the PCL particles were ellipsoidal in chitosan and fibrous in the WPI and the data indicated that the particle shape had an important influence on the water vapour transmission rate. The large decrease in water vapour transmission rate was also due to a reduction in water solubility because of limited swelling of the constrained chitosan or WPI matrix in the presence of PCL. SEM revealed that the miscibility/compatibility between PCL and the matrices was good. The water vapour transmission rate of the films decreased with increasing vacuum-drying time of the chitosan and WPI solutions. Microcalorimetry provided accurate estimates of water vapour transmission rate. Furthermore, this technique proved to be very flexible and the water vapour transmission rate could be determined over a broad range of relative humidities in a single experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Polymer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.